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a b s t r a c t

To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen
demand (COD) monitoring with high accuracy by UV–vis spectroscopy in wastewater treatment process,
a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in
this study. Two new strategies were proposed to extract relevant information of UV–vis spectral data
from variable pathlength measurements. The first strategy was by data fusion with two data fusion
levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to
improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those
obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR
models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The
second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to
generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive
accuracy (RMSEP) was improved by 20–43% as compared to single pathlength spectroscopy. Comparing
to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found
to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD)
of 3.72. It also offered excellent correlation of predicted and measured COD values with R2 of 0.936.
In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be
successful in enhancing prediction performance of COD in wastewater and showed high potential to be
applied in on-line water quality monitoring.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Water quality monitoring is of growing importance all over the
world with increasing demand of the real-time water quality
information. To monitor wastewater quality during different
treatment processes is crucial to ensure the treatment efficiency
and comply with increasingly stringent regulations [1–3].

Chemical oxygen demand (COD) is a common indicator of
organic matter concentration to assess wastewater quality. The
standard COD test involves adding toxic chemicals and is time-
consuming, requiring 2–4 h until the result is obtained. With the
development of optical techniques, spectroscopic analysis, includ-
ing UV–vis spectroscopy [4–7], fluorescence spectroscopy [8–10]

and near-infrared spectroscopy [6,11], shows high potential in
wastewater COD monitoring. They are fast, non-destructive and
environment-friendly that requires no chemicals added. Among
these spectroscopic techniques, UV–vis spectroscopy shows the
most extensive application and exhibits the best correlation with
COD by multivariate data analysis. In particular, partial least
squares (PLS) regression is routinely adopted to generate regres-
sion model based on UV–vis spectral data to estimate the water
quality parameters [12,13].

Conventionally, an optimal pathlength is required to be selected
and fixed for UV–vis spectroscopic measurements. According to Beer–
Lambert law, absorbance is proportional to pathlength. It is a crucial
parameter for measurements as it defines the distance that light
travels through a sample. However, the selection of the optimized
pathlength is a difficult task because it varies from a few millimeters
for wastewater influent to dozens of millimeters for wastewater
effluent [4]. Furthermore, different treatment processes usually
result in different matrixes and concentrations of wastewaters, thus
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requiring different pathlengths for different treatment processes. Even
for the same treatment process, the wastewater concentrations vary
significantly which would consequently compromise the performance
of the monitoring technique. Therefore, UV–vis spectroscopic system
with variable pathlength would be a more desirable solution.

A large quantity of spectral data, in this sense, would be
generated thus requiring a suitable strategy to manage and analyze
these data. Data fusion has become a popular method to deal with
abundant amount of data in analytical chemistry recently [7,14–16].
It is the process to integrate multiple data from different sources
with the goal of obtaining information of greater quality. However,
simply fusing data does not generally deliver better results [17].
As far as UV–vis spectroscopy is concerned, data saturation occurs
when too long a pathlength is implemented, whereas too short a
pathlength would not be able to generate a sufficiently strong
signal. Furthermore, not all the combinations of different path-
lengths will yield better results than individual pathlength since
data redundancy and poor information from some pathlengths
might compromise the others. In order to overcome this problem,
variable selection was implemented to select informative variables
that contribute to multivariate regression. Two data fusion levels,
low-level data fusion (LLDF) and mid-level data fusion (MLDF),
combined with variable selection are presented and compared for
analyzing variable pathlength spectral data.

Another novel strategy is also presented to handle informative
features from different pathlengths by applying slope calculation
to generate slope-derived spectroscopy. Slope spectroscopy™,
developed by C Technologies, Inc. (Bridgewater, NJ, USA), is a
spectroscopic technique that is applied in determining protein and
antibody concentration with known extinction coefficients of
proteins, particularly at high concentrations which traditionally
requires a series of dilutions and is prone to preparation error and
sample contamination [18,19]. This technique basically selects the
peak wavelength for the slope calculation and successfully applies
it in selecting the linear range for concentration calculation with
a prior knowledge of the extinction coefficient of the analyte. But
the slope information has not been reported for full-spectrum
application or for regression purpose. Here, we propose a novel
application of the slope calculation for each wavelength and
incorporate calculated slope data for the corresponding wave-
length to generate a slope-derived spectrum. As such, each sample
measured at variable pathlength would be represented by a slope-
derived spectrum. The slope-derived spectral data would be
subsequently input for regression.

To the best of our knowledge, this is the first time to apply
variable pathlength UV–vis spectroscopy to monitor wastewater
quality. COD is chosen as the parameter to evaluate the application
of the proposed variable pathlength spectroscopy. Two strategies,
fusion analysis and slope-derived spectroscopy, are employed to
analyze variable pathlength spectral data. This study focuses on
investigating the prediction performance by the proposed variable
pathlength spectroscopy compared with the conventional single
pathlength spectroscopy.

2. Experimental

2.1. Sample preparation and UV–vis spectroscopic measurements

Wastewater samples were taken from four different treatment
processes (clarification, flotation, activated sludge and effluent) of
Singapore Airline Terminal Services (SATS) wastewater treatment
plant. They are mostly composed of degraded food from airline
catering and dishwashing detergents. All samples were filtered by
2.5 mm Whatman filter paper and kept at 4 1C before analysis.
98 wastewater samples were divided into two sets: 82 samples for

calibration set and 16 samples for validation set. The COD range in
calibration set was 112 mg L�1 to 1872 mg L�1, whereas in valida-
tion set, COD values were from 130 mg L�1 to 1792 mg L�1.

UV–vis spectra were measured by HACH DR/5000 spectro-
photometer with wavelength range from 200 to 650 nm
(Δ¼2 nm). A home-made sample cell (Fig. 1) was designed and
fabricated to adjust pathlength (0.5–18 mm). The adjustment of
pathlength, defined by the distance of two quartz windows, was
subjected to the movement of a threaded cylindrical tube sealed
with O-ring. One revolution of the cylindrical tube equals to 1 mm
adjustment. Each wastewater sample was subjected to UV–vis
spectroscopic measurements at 19 different pathlengths (0.5 mm
and 1–18 mm with 1 mm increment). The pathlength accuracy
was checked by comparing with standard cuvettes of 1 mm, 5 mm
and 10 mm. The differences of absorbance values were found to be
negligible. Absorbance values of different pathlengths were set to
zero according to MilliQ deionized water (18.2 MΩ cm at 25 1C)
at the corresponding pathlength. Triplicate measurements for each
wastewater sample at each pathlength were taken and the average
spectrum was generated for further data processing.

COD measurements were conducted according to standard
methods using COD digestion reaction and direct reading spectro-
photometer (DR/5000, Hach Company, USA).

2.2. Multivariate data analysis

All chemometric data analysis was made with Matlab 2010b
Software (The MathWorks, Natick, MA, USA) and PLS Toolbox 7.0
(Eigenvector Research Inc., Wenatchee, WA, USA). Contiguous
block with 10 splits was selected as the cross-validation method
the relatively large number of samples analyzed in random order
in this study [20]. During the cross-validation process, 82 samples
were split into 10 blocks and each block would be left out and
predicted using the model built by the rest of the data from the
other nine blocks. Samples from each block would be tested out
once accordingly. Regarding validation, samples from validation
set are predicted by the model built with the calibration set.

Spectral data involve continuous information, so interval win-
dow instead of individual data is exploited [21]. Interval partial-
least squares (iPLS) is suitable for this application. It involves
selecting equidistant subintervals on spectra aiming to produce
superior PLSR model compared to full spectral model [22]. The
selection criterion of intervals is based on those that provide the
lowest RMSECV generated by the selected variables. Two expan-
sion methods of iPLS, designated as backward/forward iPLS (BiPLS/
FiPLS), have been developed and performed sucessfully to optimize
the infromative regions [23,24]. In FiPLS, PLSR models are built
using successively improving intervals with respect to RMSECV
measure [25]. If only one interval is desired, the algorithm would
stop calculating at that point and produce the results. If, however,
more than one interval is requsted, additional calculation cycles
would be performed until no improvement of RMSECV is achieved.

Fig. 1. Design of home-made sample cell with adjustable path length.
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BiPLS works in an opposite manner to FiPLS with a different
algorighm. For BiPLS algorithm, PLS models are built with each
interval left out in a sequence and intervals are eliminated from the
one with the worst RMSECV until the pre-determined interval
number is achieved. FiPLS was chosen to perform variable selection
in this study as it yielded better models (results not shown). The
size of interval window from two to 30 intervals was varied and
optimized to give the best regression model in terms of the lowest
RMSECV obtained.

2.3. Variable pathlength spectral data fusion

To handle variable pathlength spectral data, two data fusion
strategies are suitable: (a) data level fusion or low level data fusion
(LLDF) and (b) feature level fusion or mid-level data fusion (MLDF)
[26], as shown in Fig. 2.

LLDF is the most straightforward which involves concatenating
all raw data from variable pathlength measuremnents into a single
matrix called a “meta-spectrum” [27]. Variable selection was sub-
sequently performed and finally input for clasification or regression
analysis. In this study, PLS regression was applied to generate
regression model for prediction purpose.

Unlike LLDF, MLDF required a previous variable selection step
to extract the most relevant features from different spectra before
data concatenating. As a total of 19 different pathlength spectra
were contatenated, a relatively large number of variables were still
included. Therefore, another round of variable selection by FiPLS
before regression was performed to further refine the relevant
features and minimize number of variables.

2.4. Generation of slope-derived spectrum

To generate a slope-derived spectrum, a plot of absorbance
against pathlength at each wavelength was created, as shown in
Fig. 3. Absorbance tends to saturate as pathlength becomes
excessively long. The saturation data points (data points in red in
Fig. 3) would affect the linearity of the linear regression line by
lowering the coefficient of determination R2. Since these satura-
tion data points would eventually influence the performance of
PLS regression model, it was advisable to eliminate them in order
to avoid the destruction and so increase the R2 value. The R2 value
of 0.998 was determined as the lowest acceptable value for slope
calculation [19]. Data points were eliminated in sequence from the
longest pathlength until the acceptable R2 value was reached.
Noisy data points from short pathlength were also eliminated to
suit the acceptable R2. As such, slope obtained at each wavelength
was produced and subsequently combined to generate the slope-
derived spectrum.

2.5. Evaluation of model performance

The basic principle of PLS regression is to decompose spectral
data into their most common variations, known as factors or latent
variables, that represent the variations over the measurement
range. The optimal number of PLS factors was selected to provide
the minimum value for the predicted residual error sum of squares
(PRESS).

The evaluation of the prediction performance of the model was
based on several performance indexes, such as correlation of deter-
mination (R2), root-mean-squared error of cross-validation (RMSECV),
root-mean-squared error of prediction (RMSEP) and residual predic-
tive deviation (RPD). The equations of these performance indexes are

Fig. 2. Two different levels of data fusion of variable pathlength spectral data.
(a) LLDF, (b) MLDF. PL: spectral data from each pathlength; Fi-PL: variables selected
by FiPLS; PLSR: partial-least-squares regression.

Fig. 3. Typical wastewater (COD 1190 mg/L) UV–vis spectra by variable pathlength measurements and example of the derivation of slope-derived spectroscopy. Inset graphs:
the slope calculation plot of absorbance against pathlength at wavelength of 226 nm (top); the plot of slope-derived spectrum (bottom). (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.)
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shown as follows:

R2 ¼ 1�∑n
i ¼ 1ðŷ�yiÞ2

∑n
1ðyi�ymÞ2

ð1Þ

RMSE ðCV or PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1ðŷi�yiÞ2
n

s
ð2Þ

RPD¼ SD=RMSEP ð3Þ

yi is the measured (actual) value by reference method; ŷi is the
predicted value by calibration model; ym is the mean of the actual
values; n is the number of samples used in each data set; SD is the
standard deviation in each data set.

3. Results and discussion

3.1. Wastewater UV–vis spectral characteristics

Generally, the UV–vis spectral shape was found to be feature-
less with no evident peaks (see Fig. 3). But two absorption
shoulders could be observed at around 220 nm and 275 nm. The
absorption at around 275 nm was related to high content of
organic substances from degraded food, whereas the absorption
at around 220 nm originates mainly from the dishwashing deter-
gents in wastewater [28].

From spectra in Fig. 3, one can also observe that as the
pathlength becomes longer, absorption becomes stronger until it
goes beyond the detection limit of detector, resulting in signal
saturation. Absorption signals of shorter wavelengths tend to be
more readily saturated than those of longer wavelengths. This
problem occurs when the pathlength for measurement is not
chosen appropriately. If, on the other hand, absorption becomes
too low, signal resolution would become insufficient, particularly
when too short a pathlength is chosen at wavelengths longer than
350 nm (see Fig. 3). In order to simultaneously circumvent the
above-mentioned problems, UV–vis spectroscopy with variable
pathlength is presented and compared with single pathlength
spectroscopy in the subsequent sections.

3.2. Performance of single pathlength spectroscopy

Variable selection was performed to discard irrelevant informa-
tion and retain quality-relevant variables. Fig. 4 summarizes the
variables selected by FiPLS computation. Variables in UV region
(200–300 nm) were generally selected for each pathlength, sug-
gesting that this region represented the most important features
for organic substances of degraded food and detergents [28].

To evaluate the prediction performance of models built by
single pathlength UV–vis spectroscopy, R2, RMSECV, RMSEP and
RPD are compared, as summarized in Table 1. The fitness between
predicted COD by PLSR model and measured COD by reference

Fig. 4. Variables selected by FiPLS for each single pathlength and the proposed slope-derived spectroscopy. Slope: slope-derived spectroscopy.

Table 1
Comparison of PLSR model performances for single path length UV–vis spectro-
scopy, variable-path length data fusion and slope-derived spectroscopy.

PL
(mm)

Variable
#

Factor
#

Calibration Validation

RMSECV
(mg/L)

R2 CV RMSEP
(mg/L)

R2

Pred
RPD

0.5 40 6 155 0.808 176 0.912 2.58
1 32 7 153 0.829 170 0.895 2.68
2 50 7 186 0.723 160 0.915 2.85
3 24 6 210 0.647 214 0.814 2.13
4 15 5 152 0.814 159 0.918 2.86
5 24 8 199 0.692 156 0.914 2.91
6 64 7 226 0.592 189 0.843 2.41
7 132 5 247 0.525 172 0.855 2.64
8 30 5 213 0.641 171 0.851 2.67
9 55 5 201 0.678 160 0.868 2.84
10 15 6 153 0.817 158 0.910 2.87
11 92 5 193 0.702 159 0.873 2.87
12 70 5 185 0.727 174 0.851 2.62
13 150 5 187 0.719 168 0.862 2.70
14 48 7 220 0.643 153 0.879 2.97
15 20 8 191 0.713 179 0.865 2.54
16 110 6 172 0.766 175 0.848 2.61
17 90 6 195 0.696 164 0.855 2.78
18 16 6 184 0.732 182 0.833 2.49
LLDF 77 9 150 0.824 142 0.920 3.22
MLDF 72 9 153 0.815 138 0.922 3.29
Slope 36 5 152 0.823 122 0.936 3.72

PL: path length; variable #: number of variables selected by FiPLS; factor #:
number of PLS factors; R2 CV: R2 of cross validation; R2 Pred: R2 of prediction;
Slope: slope-derived spectroscopy.
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method is represented by the correlation of determination R2 of
prediction. Generally, it was found that a moderately good correla-
tion with prediction R2 of 0.8–0.9 could be obtained by single
pathlength UV–vis spectroscopy [4,6,7]. From Table 1, one can
observe that analogous correlations were obtained by single
pathlength spectroscopy. The best correlation was from path-
length of 4 mm (R2¼0.918). Comparable correlations could also
be found from pathlengths of 0.5 mm, 2 mm, 5 mm and 10 mm
with R2 value of 0.912, 0.915, 0.914 and 0.910, respectively.
However, if the pathlength was not appropriately chosen, the
correlation would drop substantially.

The robustness of a regression model is indicated by RPD. The
larger the RPD value, the more robust the regression model is. In
contrast, relatively small value of RPD suggests that regression model
having trouble and less reliable for the future prediction. RPDo2 is
regarded insufficient for applications, whereas value between 2 and
3 is considered good for approximate quantitative predictions. When
RPD is larger than 3, it suggests excellent prediction [29]. From
Table 1, models built by each pathlength give comparable results
with 34RPD42, suggesting that the models were good for approx-
imate quantitative predictions. It was found that when comparing the
performances of models obtained by different single pathlengths, the
RPD values did not vary substantially, which leads to the difficulty to
select an optimal pathlength for UV–vis spectroscopic measurement.

3.3. Performance of variable pathlength data fusion

Owing to the limitations of single pathlength spectroscopy,
variable pathlength spectroscopy was proposed to investigate
whether complementary information and synergistic effect can
be obtained. The analysis of variable pathlength spectral data was
performed by data fusion, which had been successfully applied to
extract complementary features and so as to improve predictive
accuracy [14,30]. Two different levels (LLDF and MLDF) of data
fusion were adopted to carry out this task.

Although models obtained by several single pathlengths
(0.5 mm, 1 mm, 4 mm and 10 mm) gave comparable RMSECV and
R2 of cross validation, when applied to validation samples, variable
pathlength data fusion showed its superiority. RMSEP values were
found to be 142 mg/L and 138 mg/L for LLDF and MLDF, respectively.
The corresponding RPD values were larger than 3, suggesting
excellent predictive accuracy.

The FiPLS selected variables for LLDF and MLDF are shown in
Fig. 5. Informative spectral regions at around 220 nm and 275 nm

were both selected for LLDF and MLDF. Several visible regions
were also chosen to cover the absorption of colloidal fraction of
organic substances even after 2.2 mm filtration [31]. LLDF
demanded variables measured from seven different pathlengths,
while MLDF required only five, which might be due to an extra
prior variable selection step by FiPLS in MLDF. It is noteworthy that
overlapping spectral regions were selected by both fusion levels.
By LLDF, spectral region of 212–222 nm was both selected from
1 mm and 9 mm measurements, while replicated selections were
also performed in visible region (see Fig. 5a). Similar observations
were made for MLDF with overlapping spectral region of 210–230 nm
and 394–406 nm (see Fig. 5b), which highlighted the importance of
these regions.

Generally, by LLDF and MLDF, visible region was mostly selected
from long pathlength measurements, whereas relatively short
pathlength spectra contributed more in UV region. This observation
implies complementary information can be obtained from variable
pathlength measurements. By data fusion, the incorporation of
complementary spectral data of variable pathlength measurements
delivered more accurate and more robust prediction of COD than
conventional single pathlength spectroscopy.

3.4. Performance of slope-derived spectroscopy

From Fig. 4, one can observe that by FiPLS, three wavelength
regions (218–234 nm, 254–270 nm and 398–450 nm) were
selected for slope-derived spectroscopy. A five-factor PLS regres-
sion model was built on these three selected wavelength regions
with 36 variables. As shown in Table 1, comparing with single
pathlength spectroscopy, the lowest RMSEP of 122 mg/L and the
highest prediction R2 of 0.936 were obtained. The prediction
performance was found to be excellent, which was indicated by
the largest RPD of 3.72. The improvements of RMSEP by slope-
derived spectroscopy ranged from 20% (PL of 14 mm) to 43% (PL of
3 mm).

This superior predictability of slope-derived spectroscopy was
mainly attributed to its ability to discard non-relevant features and
the synergy to incorporate relevant information from different
pathlength spectral data. The slope information from the linear
regression of absorbance (A) against pathlength (ℓ) was directly
related to concentration (c) and extinction coefficient (ε) from the
rearrangement of Beer–Lambert law (A/ℓ¼εcþ intercept). The
linearity of absorbance against pathlength was strictly controlled
by the correlation of determination R2 larger than 0.998. As such,
any non-linear features were able to be eliminated. In addition,
synergistic effect from slope calculation was achieved by incorpor-
ating spectral data from variable pathlength measurements.

It has been demonstrated that highly accurate PLSR models can
be obtained by fusing variable pathlength spectral data with both
LLDF and MLDF. As compared to slope-derived spectroscopy,
however, these two models were relatively complex, demanding
up to nine PLS factors, which might not be preferable in practical
application. The increased number of PLS factors might be attrib-
uted to some non-linear features which were still included in the
regression and additional PLS factors were required to handle
them. Effectively removing non-linear features, slope-derived
spectroscopy produced a more parsimonious model with only five
factors and exhibited much better prediction performance with
lower RMSEP and higher prediction R2. Fig. 6 shows the plot of
predicted COD by PLS regression model from slope-derived
spectroscopy against the measured COD by reference method. It
can be observed that excellent fitness (R2 of 0.936) was obtained
with all data from validation set falling along the best-fit 1:1 line.
Overall, slope-derived spectroscopy outperformed variable path-
length data fusion with higher predictive power while at the same
time produced a much simpler PLSR model to be utilized.

Fig. 5. Variables selected by FiPLS for variable pathlength with LLDF (a) and MLDF (b).
The numbers next to the gray bar indicate the wavelength region selected.
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4. Conclusion

The application of variable pathlength UV–vis spectroscopy is
presented for the first time in wastewater COD monitoring. Two
different levels of data fusion were employed to analyze the
variable pathlength spectra. Both LLDF and MLDF yielded more
robust and more accurate PLS regression models than individual
pathlength spectroscopy. Another proposed strategy slope-derived
spectroscopy was successful in further enhancing the predictive
accuracy (lowest RMSEP of 122 mg/L) while at the same time
simplifying PLSR model with only five factors required.

By a simple pathlength adjustment set-up, the requirement of
selecting appropriate single pathlength is eliminated. In combina-
tion with PLS regression, highly accurate and highly reliable PLRS
model can be obtained to determine COD in the calibrated range of
112–1872 mg/L. It is expected that the dynamic range of COD
determination would be broader with the variable pathlength
approach compared with the single pathlength method. Since the
PLS regression is based on full spectra rather than absorbance at
individual wavelengths, and COD measures the total amount of
organic compounds and hence is highly dependent on water
matrix, it was not possible to make accurate comparison between
the dynamic ranges for the whole spectra obtained using the
variable pathlength approach with absorbance measured for
individual pathlengths. Nevertheless, future studies will be con-
ducted to determine the applicability of the variable pathlength
approach in a broader COD measuring range than the calibrated
range.

The proposed variable pathlength approach is also expected to
be able to improve the prediction performance in monitoring
other water quality parameters. Furthermore, high potential of
applying this technique for on-line monitoring can be foreseen
with automated control of the variations of pathlength. Future
work will be focused on the investigation of multiple water quality

parameter monitoring and the design of variable pathlength on-
line sensor for real-time quality monitoring.
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